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The Hilbert Transform

e For f € S(R), the Hilbert transform is given by:

Hf (x) == lim fx=9) 4
=0 Jit|>e t

o As a multiplier operator, it is:

Hf (&) = —misgn(&)f ().
@ The Hilbert transform is an example of a singular integral operator
of Calderéon-Zygmund type. Calderén-Zygmund theory is used to
prove the following:
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The Hilbert Transform

e For f € S(R), the Hilbert transform is given by:

Hf (x) == lim fx=9) 4
=0 Jit|>e t

o As a multiplier operator, it is:

Hf (&) = —misgn(&)f ().
@ The Hilbert transform is an example of a singular integral operator
of Calderéon-Zygmund type. Calderén-Zygmund theory is used to
prove the following:

The Hilbert transform is bounded on LP(R) for every 1 < p < oo:

[[HF || ey < Collfllew),

for some C, > 0.
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Calderén-Zygmund Theory Summary

e L2 — [2 bounds follow from Plancherel’s theorem and the properties
of the kernel 1/t.

o ! — [ 1% hounds for the Hilbert transform are obtained via the
Calderén-Zygmund decomposition.

@ [P — [P bounds, for 1 < p < oo, follow from interpolating between
the above estimates and duality.
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BHT and History

The bilinear Hilbert transform in the direction (v, 3) € R? is defined for
f,g € S(R)by

BHT, 5(f,g)(x) == lim J|‘t|> f(x —at)g(x — ﬂt)%.

A. Calderén introduced the BHT,, g while studying the Cauchy integral on
Lipschitz curves in 1970.
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BHT and History

The bilinear Hilbert transform in the direction (v, 3) € R? is defined for
f,g € S(R)by

dt
BHT, 5(f,g)(x) == lim f f(x—at)g(x—ﬂt)T.
[t|>e
A. Calderén introduced the BHT,, g while studying the Cauchy integral on
Lipschitz curves in 1970.
Non-Uniform Bounds (depending on («, /3))

@ M. Lacey, C. Thiele '97: 2 < p,g<o0,1 <r <2
@ M. Lacey, C. Thiele '99: 1 < p,q < ©0,2/3 < r < o0 (general case)
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BHT and History

The bilinear Hilbert transform in the direction (v, 3) € R? is defined for
f,g € S(R)by

BHT, 5(f,g)(x) == lim f|t|> f(x —at)g(x — ﬂt)%.

A. Calderén introduced the BHT,, g while studying the Cauchy integral on
Lipschitz curves in 1970.

Non-Uniform Bounds (depending on («, /3))

@ M. Lacey, C. Thiele '97: 2 < p,g<o0,1 <r <2

@ M. Lacey, C. Thiele '99: 1 < p,q < ©0,2/3 < r < o0 (general case)
Uniform Bounds (independent of (a, 3))

@ C. Thiele '02: weak estimate in (2,2, )

@ L. Grafakos, X. Li '04: 2 < p,g< 0,1 <r<?2

@ X Li'06: 1<p,g<22/3<r<l

@ R. Oberlin, C. Thiele '11: expected bounds for Walsh model
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The Main Theorem

The result that we study in this talk asserts the following:

Theorem (M. Lacey, C. Thiele, 1999)

The bilinear Hilbert transform maps LP x L9 into L™ for any 1 < p,q < ®©
with the property that % + %’ =1 and 2/3<r<oo.

r
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The Main Theorem

The result that we study in this talk asserts the following:

Theorem (M. Lacey, C. Thiele, 1999)

The bilinear Hilbert transform maps LP x L9 into L™ for any 1 < p,q < ®©
with the property that % + %’ =1 and 2/3<r<oo.

r

(0,0,1)

Figure: Range for the BHT operator. The plot contains tuples (1/p,1/q,1/r'),
which in our case must lie on the plane x +y +z =1.
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Restricted Weak Type Estimates

Definition
Let 1 < p,q <o and 0 < r < oo be such that 1 + 1 = 1 A pilinear

operator T is of restricted weak type (p, g, r) if for all measurable sets
&1, &>, E of finite measure there exists £’ — £ with
|E'] ~ |€| (called a major subset), such that

< |51|1/P|52|1/Q|g/|1/r’

f T, £)()F(x) dx
R

for every |fi]| < xe,, || < x&,, and |f| < xger.
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Restricted Weak Type Estimates

Definition
Let 1 < p,q <o and 0 < r < oo be such that 1 + 1 = 1 A pilinear

operator T is of restricted weak type (p, g, r) if for all measurable sets
&1, &>, E of finite measure there exists £’ — £ with
|E'] ~ |€| (called a major subset), such that

< |51|1/P|52|1/Q|g/|1/r’

f T, £)()F(x) dx
R

for every |fi]| < xe,, || < x&,, and |f| < xger.

o If T is of restricted weak type (p, q,r), then

T (s 2)llre0 < [IllplIf2]lq

whenever f; and £ are as above.
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Main Theorem Reformulated

The proof of the main theorem can be reduced to proving the following:

Fixe >0, (small). Let 1 <p<1l+e 2—€<q<2,and such that for

= }, s (—17 one has 2/3 < r < 1. Then the BHT is of restricted weak type
(p,q,r).

N =
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Interpolation Details

(1,1,-1)

Figure: The three step interpolation to reduce the main theorem to the theorem
on the previous slide. The plot contains tuples (1/p,1/q,1/r"), which in our
case must lie on the plane x + y + z = 1.
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Comparison with Bilinear Coifmann-Meyer Operators

o A bilinear Coifmann-Meyer operator is an operator of type:

T(f,8)(x) — (61, £)F(&1)8 (&)™ 118 de de,

m
R2

where [0°m(§)| < \5|1\a\'
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Comparison with Bilinear Coifmann-Meyer Operators

o A bilinear Coifmann-Meyer operator is an operator of type:

T(F.e)) ~ [ me)fea)e @ dade,

where [0°m(§)| < \5|\a\
I T(F,&)llir < [|Flleellgllia for L < p,g <0, 5+ 2 =1,0<r <.

The following bounds hoId
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Comparison with Bilinear Coifmann-Meyer Operators

o A bilinear Coifmann-Meyer operator is an operator of type:

T(F.e)) ~ [ me)fea)e @ dade,

where [0°m(§)| < \5|\a\
I T(F,&)llir < [|Flleellgllia for L < p,g <0, 5+ 2 =1,0<r <.

The following bounds hoId

@ The bilinear Hilbert transform is a bilinear multiplier operator
with a more singular multiplier:

BHT(f,g) — —i fw sen(é1 — &)f (€1)8(&) ™ O T dg d.
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Comparing Multiplier Singularities

Bilinear Coifmann-Meyer Operator

&

Figure: Singularity point,
(&1,&) = (0,0), of multiplier
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Comparing Multiplier Singularities

Bilinear Coifmann-Meyer Operator BHT
& &2
0 & &
Figure: Singularity point, Figure: Sir!gullarity line, & = &, of
(&1,&) = (0,0), of multiplier BHT multiplier
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Discrete Representation of the Multiplier

Bilinear Coifmann-Meyer BHT

&2
&2

rl=

Figure: Whitney squares with respect to
Figure: Whitney rectangles with & =&
respect to (0,0)

Aleksandra Niepla An Overview of the Bilinear Hilbert Transform



Discrete Representation of the Multiplier

Bilinear Coifmann-Meyer BHT

&2

&1

Figure: Whitney squares with respect to

Figure: Whitney rectangles with & =&
respect to (0,0)
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Discrete Representation of the Multiplier

Bilinear Coifmann-Meyer BHT
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Discrete Representation of the Multiplier

Bilinear Coifmann-Meyer

&2

BHT

&1

Figure: Whitney squares with respect to

Figure: Whitney rectangles with & =&
respect to (0,0)
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Discrete Representation of the Multiplier

Bilinear Coifmann-Meyer BHT

&1

Figure: Whitney squares with respect to
Figure: Whitney rectangles with & =&
respect to (0,0)
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Discrete Representation of the Multiplier

Bilinear Coifmann-Meyer BHT

&1

Figure: Whitney squares with respect to
Figure: Whitney rectangles with & =&
respect to (0,0)
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Discrete Representation of the Multiplier

Bilinear Coifmann-Meyer BHT

Figure: Whitney rectangles with

respect to (0,0) Figure: Whitney squares with respect to

&1 = &. Giving model: R
m(&1,&2) = X0 20 (€1)0q, (§2)Pq, (€1 + &2)
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BHT Model Operator

We obtain a model operator associated to the BHT given by:

BHTe(f, f) = ),
PeP

Each P = (Py, Py, P3) € P is a 3-tuple of tiles in the phase plane.

|I |1/2<fi7¢ ><f27¢ >¢
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BHT Model Operator

We obtain a model operator associated to the BHT given by:

BHTe(f, f) = ),
PeP

Each P = (Py, Py, P3) € P is a 3-tuple of tiles in the phase plane.

|I |1/2<fi7¢ ><f27¢ >¢

frequency

P,‘=/p><Q,'

ot wn{ | I Py Ll Q] =1
1@ =

w2 o | I P
wr| o | I P

-
I = 2= K[m, m+ 1)

space
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Properties of Tri-Tiles

@ For every dyadic interval /, there
can be a whole column of tri-tiles
Pst Ip=1.

@ The position of Py or P> or Ps
determines position of the rest.

@ Given location of P1/P>,
then P,/Py lies a number of
steps away comparable to
Go.

@ The frequency coordinate of
Ps is essentially a sum of
the other two.

@ If the frequency intervals of P;
intersect i.e. all contain &, then
the frequency intervals of the
corresponding P» tiles are disjoint
and lacunary away from &p.
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Properties of Tri-Tiles

@ For every dyadic interval /, there frequency

can be a whole column of tri-tiles
Pst Ip=1.

@ The position of Py or P> or Ps
determines position of the rest.

@ Given location of P1/P>,
then P/P; lies a number of
steps away comparable to
Go.

@ The frequency coordinate of
Ps is essentially a sum of
the other two.

@ If the frequency intervals of P;
intersect i.e. all contain &g, then
the frequency intervals of the
corresponding P» tiles are disjoint
and lacunary away from &. ~ space
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@ For every dyadic interval /, there frequency

can be a whole column of tri-tiles
Pst Ip=1.

@ The position of Py or P> or Ps
determines position of the rest.

@ Given location of P1/P>,
then P/P; lies a number of
steps away comparable to
Go.

@ The frequency coordinate of
Ps is essentially a sum of
the other two.

o !f the frequency interv.als of Pi w1 + wo
intersect i.e. all contain &g, then
the frequency intervals of the
corresponding P» tiles are disjoint w1
and lacunary away from &. space

w2
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Properties of Tri-Tiles

@ For every dyadic interval /, there frequency

can be a whole column of tri-tiles
Pst Ip=1.

@ The position of Py or P> or Ps
determines position of the rest.

@ Given location of P1/P>,
then P/P; lies a number of
steps away comparable to
Go.

@ The frequency coordinate of
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the other two. %)) I ]
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@ If the frequency intervals of Py w1l I ]
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Properties of Tri-Tiles

@ For every dyadic interval /, there frequency

can be a whole column of tri-tiles
Pst Ip=1.

@ The position of Py or P> or Ps
determines position of the rest.

@ Given location of P1/P>,
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Properties of Tri-Tiles

@ For every dyadic interval /, there frequency

can be a whole column of tri-tiles
Pst Ip=1.

@ The position of Py or P> or Ps
determines position of the rest.

@ Given location of P1/P>,
then P,/Py lies a number of

steps away comparable to
C p y p w1 + wo

@ The frequency coordinate of
Ps is essentially a sum of
the other two. wo

@ If the frequency intervals of Py w1 _:
intersect i.e. all contain &g, then
the frequency intervals of the

corresponding P» tiles are disjoint
and lacunary away from &. ~ spacé
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Definition

Let P be any collection of tri-tiles. A subcollection T < P is called a j-tree
provided there exists a tri-tile Pt (called the top of the tree) such that

Ip € lp, and wp,;j S 3wpj, forevery PeT.

Figure: P tiles in a 1-tree.
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L2 Size

Let P be a finite collection of tri-tiles and let f : R — C. The j-size, for
j€{1,2,3}, of the sequence {f, ¢1Pj>Pe[[> is

1/2
: j 1 '
sizep (<f, CI)’Pj)p) = s (m Z [<f, <|>’Pj>|2> )
< PeT

where T ranges over all trees in P that are i— trees for j # j.
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L2 Size

Let P be a finite collection of tri-tiles and let f : R — C. The j-size, for
j€{1,2,3}, of the sequence {f, ¢1Pj>Pe[p> is

1/2
: j 1 '
sizep (<f, dJJPj)p) = s (m Z [<f, <|>’Pj>|2> )
< PeT

where T ranges over all trees in P that are i— trees for j # j.

@ Sizes aid in estimating BHTp when [P consists of a single tree:

<

fR BHT 7 (f1, f2)(x)f3(x)dx

3
1 : :
2 Tl OOl BB, 02) < 17| [ size (5 &% per)
PeT j=1
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Chain of Strongly i-Disjoint Trees

Let 1 </ < 3. A finite sequence of trees T, ..., Ty is a chain of strongly
i-disjoint trees provided that: they are pairwise disjoint and
o If Pe Ty, P e Ty(ly # £2) with 2wp. N 2wpr # & then
|(.U,DI.| < |WP,’| — IP/ N ITll = @ and
|o.)pl{‘ < |o.)pl.| —— /P N ITZ2 = @

& Disjoint Chain
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Chain of Strongly i-Disjoint Trees

Let 1 </ < 3. A finite sequence of trees T, ..., Ty is a chain of strongly
i-disjoint trees provided that: they are pairwise disjoint and
o If Pe Ty, P e Ty(ly # £2) with 2wp. N 2wpr # & then
|(.U,DI.| < |WP,/| — IP/ N ITll = @ and
|o.)pl{‘ < |o.)pl.| —— /P N ITZ2 = @

§

Not a Disjoint Chain
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L2 Energy

The j-energy of the sequence (f, q>in>P€]P’ is

energy <<f,¢1;'oj>P) = SUPSUP2 (Z ’/T\> ’

TeT

T ranges over chains of strongly j— disjoint trees (which are i-trees for
some i # j) having the property that

size ((f, d>’,',j>p> ~ 2",

@ The energy aids in summing the estimates obtained on each
individual tree.
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Estimate on the Trilinear Form

The following theorem provides a way of estimating a generic trilinear form
associated with BHTp(f1, f2). First we write:

Ne(hsfo, ) = fR BHTw (1, ) (x)fs(x) dx.

Theorem (size-energy estimate)

Let P be a finite collection of tri-tiles. Then

3
Ae(fi. fo. )] < | [(size((F, &% )e)) (energy((F, % Ye))
j=1

for any 0 < 601,05,05 < 1 with 01 + 6> + 63 = 1.
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Stopping-time Decompositions

The following is a key ingredient in the proof of the size-energy duality
theorem.

Proposition (stopping-time decomposition)

Let j € {1,2,3}. For any P’ ¢ P and any n € Z such that

size((F, &% per) < 2 "energy ((F, ¥ per )
One can decompose P’ = P~ U P* in such a way that

size((fj, @, pep-) < 27" energy ((f, @) e )

and P can be written as a disjoint union of trees T € T such that

ilirl s 2.

TeT
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Proof of Stopping-Time Decomposition

(WLOG take j=2) Consider all i-trees T (i # 2) that are upward 2— trees
rooted at Pt and satisfy:

1/2
1 : .
<“T| DK ¢’Pj>\2) > 2" lenergy <<f7 ¢’pj>PeP) :

PeT

If there are no such trees, terminate algorithm.

Aleksandra Niepla

An Overview of the Bilinear Hilbert Transform 20 / 32



Proof of Stopping-Time Decomposition

(WLOG take j=2) Consider all i-trees T (i # 2) that are upward 2— trees
rooted at Pt and satisfy:

1/2
1 : .
<“T| DK ¢’Pj>\2) > 2" lenergy <<f7 ¢’pj>PeP) :

PeT

If there are no such trees, terminate algorithm. Otherwise, choose a
maximal T whose center {1 ; of wp, ; is largest.

Aleksandra Niepla An Overview of the Bilinear Hilbert Transform 20 / 32



Proof of Stopping-Time Decomposition

(WLOG take j=2) Consider all i-trees T (i # 2) that are upward 2— trees
rooted at Pt and satisfy:

1/2
1 : .
(“T| Z |<f’ CDJPJ->‘2) > 2_”_1energy <<f7 q)jF’j>P€P) .

PeT

If there are no such trees, terminate algorithm. Otherwise, choose a

maximal T whose center {1 ; of wp, , is largest. Remove T and T from P
and place into Pt where:

T:={PeP\T|lp S Ip;,wp; 2 < 3wp}.
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1 : .
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If there are no such trees, terminate algorithm. Otherwise, choose a
maximal T whose center {1 ; of wp, , is largest. Remove T and T from P
and place into Pt where:

T:={PeP\T|lp S Ip;,wp; 2 < 3wp}.

Continue until algorithm terminates. Trees Ti, To, ..., Ty form a chain of
strongly 2— disjoint trees.
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Proof of Stopping-Time Decomposition

(WLOG take j=2) Consider all i-trees T (i # 2) that are upward 2— trees
rooted at Pt and satisfy:

1/2
1 : .
(“T| Z |<f’ CDJPJ->‘2) > 2_”_1energy (<f7 q)jF’j>P€P) .

PeT

If there are no such trees, terminate algorithm. Otherwise, choose a
maximal T whose center {1 ; of wp, , is largest. Remove T and T from P
and place into Pt where:

T:={PeP\T|lp S Ip;,wp; 2 < 3wp}.

Continue until algorithm terminates. Trees Ti, To, ..., Ty form a chain of
strongly 2— disjoint trees. Repeat for downward 2— trees.

Ol

v
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Justifying that Ty, Ty, ..., Tpy form a chain of strongly j—disjoint trees

@ Assume T, Ty do not satisfy the ¢
strongly 2-disjointness property.

@ So, there are P e T, P’ € Ty with
’sz‘ < ]wpé\ and Ipr ITS'

® But |wp,| < |wpy| implies
SPTS,,:' < §PT5,:“

£T.11
@ So, T; is selected before T .
@ Hence, the tri-tile P’ was removed in
Ts, contradicting that P’ € Ty. Eruat
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Justifying that Ty, Ty, ..., Tpy form a chain of strongly j—disjoint trees

@ Assume T, Ty do not satisfy the ¢
strongly 2-disjointness property.

@ So, there are P e T, P' € T with

’sz‘ < ’wpé‘ and /p/ C ITS'
] P

® But |wp,| < |wpy| implies
&Py, < &Pr ;- 5@1%

@ So, T; is selected before T .

N
@ Hence, the tri-tile P’ was removed in
Ts, contradicting that P’ € Ty. Eruat
21 / 32
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Iterated Stopping-Time Decomposition

P —size((f,®}, ) pep) < 27FE; for i€ {1,2,3}

N

( P iyq — size((f, ‘13111),,‘EP ) < 9-(kin) g
Yrer III\<22A /\
P Py ka —size((f, ¢P2)pepz o) S 2-()
k{ Yrer |1‘|<2M /\
Py Py sy — size((f, ‘I’;’Jpgpz k+1) <2~k g,
\ Trerlirl 5 2 /\
1 k+1 P iyo — size((f, (I)}71>PEP;HL2) <o)
ZTE’[‘ 7| < 22(‘7\
P 2A+1 P51 o —size((f, q)Pz)Per ) <9-(+2) p,
! Xrerlrl S ZQ(Ay\
(k42
P Py g2 —size((f, @h) peps ) <27 FHDE;
\ Srex ] S 25640
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lterated Stopping-time Rigorously Stated

Corollary

Let P be a collection of tri-tiles. One can split P as

P = U Py, where for ke Z we have
keZ

size <<f, <I>’,.3j>pepk> < min(2_kEj7 Sj), forevery j=1,23.

Also, one can cover Py by a collection of trees T € Ty for which

D7 il s 2%,

TETk

Aleksandra Niepla An Overview of the Bilinear Hilbert Transform 23 /32



Iterated Stopping-Time to Deduce Size-Energy Estimate

/\ ° [P’:L]kEZ]P’kJr

e P, covered by trees T' € Ty for which Y poq [Ir| < 2%F

+ . .
J —k i
k+1 k+1 . SP: S27%Ey

h B B
P\E'E E

N
1
bl

/(?\
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Bound on the Size

Lemma (Maximal Operator Bound)
Let j € {1,2,3}, then for every f € S(R) one has

size <<f <I>J >P < sup —— f |F(x)| - Xip(x
|Ip|

PeP
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Bound on the Size

Lemma (Maximal Operator Bound)
Let j € {1,2,3}, then for every f € S(R) one has

size <<f <I>J >P < sup — j |F(x)| - X1p (x)dx.
|l

PeP

@ John-Nirenberg Inequality:

- 1/2

Size), == sup —— ) a ¢Lj>|2x

P Top |IT|1/2 Pt “P| Ip

2
: 1/2
) KF, 6 )P
o T\ 2 Tl

TcP |IT PeT P Lo
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Bound on the Energy

Lemma (Bessel Inequality)
Let j e {1,2,3} and f € L2(R). Then

Energy (<f, @)z ) < [If]l2
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Bound on the Energy

Lemma (Bessel Inequality)
Let j e {1,2,3} and f € L2(R). Then

Energy ((F, ®)p ) < |Iflla.

@ One invokes strong j-disjointness of trees T € T and almost
orthogonality of the corresponding wave packets {<I>’Pj}per :

(o) - () (5 (3 )

TeT TeT \PeT

< |Ifll2

Z Z (f, ®p)®p,

T PeT

(S g ronon.r)

T PeT

2
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Proof of Main Theorem

@ Fix measurable sets &1, &>, £ of finite measure. Our goal is to
construct a subset &' < £ with |€'| ~ |€| and such that

2, Ip \1/2<f1’¢ b, 3 X f, 035 < [E1[VPI&VIEMT (1)
PeP

For every |fi| < xg,, |2 < x&,, and || < xg.
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Proof of Main Theorem (Continued)

@ Define first an exceptional set

Q= {x: Mfi(x) > C]51|}U{X : Mfy(x) > C|&al},

where M is the usual Hardy-Littlewood maximal operator.
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Proof of Main Theorem (Continued)

@ Define first an exceptional set
Q= {x: MA(x) > Cl&|}| J{x : Mh(x) > Cl&l},
where M is the usual Hardy-Littlewood maximal operator.

o Set & := E\Q. It satisfies |&’| ~ |€| if C is sufficiently large enough.
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Proof of Main Theorem (Continued)

@ Define first an exceptional set
Q= {x: MA(x) > Cl&|}| J{x : Mh(x) > Cl&l},
where M is the usual Hardy-Littlewood maximal operator.
o Set & := E\Q. It satisfies |&’| ~ |€| if C is sufficiently large enough.

@ To be able to estimate we split our collection of tri-tiles IP as follows:

d=0

where Py contains all the tri-tiles in P having the property that

2d < diSt(lp’Qc) < 2d+1‘
|p|
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Proof of Main Theorem (Continued)

So, one has

e8]
|/\P(f17f27%)| < Z ‘APd(ﬁJ f27 fé)|
d=0

< 30 (1T (e (¢5, 0 ) ) (enersy (5.3 >P€Pd))”f>
d=0 \j=1

for any 0 < 61,605,603 <1 with 61 + 60> + 03 = 1.
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Proof of Main Theorem (Continued)

So, one has

e8]
|/\P(f17f27%)| < Z ‘APd(ﬁ-ﬂ f27 fé)|
d=0

0 3 . . _0;
s 21 (Size (<f, ¢J/'3j>PelP’d))01 (energy (<f, ¢1Pj>Pe]P’d>>l 91)
d=0 \j=1
for any 0 < 61,605,603 <1 with 61 + 60> + 03 = 1.

e Size Lemma (Maximal Function Bound):

_ , 1 [, m Si < 271&i| =12
size (<f,-, ¢Jpj>PeIPd) < ;;}% m f fixy, dx — {53 < o-Mdjg,
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Proof of Main Theorem (Continued)

So, one has

|/\P(f17f27%)| < i ‘APd(ﬁJva%)’
d=0
0 3 . 9; . 1-0;
< 2 (T (size (¢F @hpper, ) (enerey (¢F, @ e, ) ) )
d=0 \j=1

for any 0 < 61,605,603 <1 with 61 + 60> + 03 = 1.

e Size Lemma (Maximal Function Bound):

_ , 1 [, m Si < 271&i| =12
size (<f,-, ¢Jpj>PeIPd) < ;;}% m f fixy, dx — {53 < o-Mdjg,

e Energy Lemma (Bessel Inequality):

energy ((f, &% per, ) < Ifill2 — energy ((h, &% per, ) < |E[M2.
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Proof of Main Theorem (Continued)

3 9; : 1-6;
(/U size <f <I>1P >,De[p>d)> ! (energy ((f, ¢’Pj>pepd)) J)

o0
Z <2d|gl|> |f,' |(1 61)/2 <2d|5 |> |5 | (1-6,) /22 Md6;
o0
_ Z 2d(91+92—M03)’51‘(1-&-91)/2‘52'(14-92)/2 < ‘51‘(1+91)/2‘52’(1+92)/2

@ Setting 1/p == (1+61)/2 and 1/q = (1 + 6)/2 completes the proof.
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Thank you for your attention!
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